USGS - science for a changing world

Water Science for Maryland, Delaware and the District of Columbia

Home >> Publications >> Online Publication - SIR 2005-5257

Factors Affecting Spatial and Temporal Variability in Nutrient and Pesticide Concentrations in the Surficial Aquifer on the Delmarva Peninsula

By Linda M. Debrewer, Scott W. Ator, and Judith M. Denver

>> Download SIR 2005-5257
     (3.5 Mb PDF Document)


Water quality in the unconfined, unconsolidated surficial aquifer on the Delmarva Peninsula is influenced by the availability of soluble ions from natural and human sources, and by geochemical factors that affect the mobility and fate of these ions within the aquifer. Groundwater samples were collected from 60 wells completed in the surficial aquifer of the peninsula in 2001 and analyzed for major ions, nutrients, and selected pesticides and degradation products. Analytical results were compared to similar data from a subset of sampled wells in 1988, as well as to land use, soils, geology, depth, and other potential explanatory variables to demonstrate the effects of natural and human factors on water quality in the unconfined surficial aquifer. This study was conducted as part of the National Water-Quality Assessment Program of the U.S. Geological Survey, which is designed (in part) to describe the status and trends in Groundwater quality and to provide an understanding of natural and human factors that affect Groundwater chemistry in different parts of the United States. Results of this study may be useful for water-resources managers tasked with addressing water-quality issues of local and regional importance because the surficial aquifer on the Delmarva Peninsula is a major source of water for domestic and public supply and provides the majority of flow in local streams.

Human impacts are apparent in Groundwater quality throughout the surficial aquifer. The surficial aquifer on the Delmarva Peninsula is generally sandy and very permeable with well-oxygenated Groundwater. Dissolved constituents found throughout various depths of the unconfined aquifer are likely derived from the predominantly agricultural practices on the peninsula, although effects of road salt, mineral dissolution, and other natural and human influences are also apparent in some areas. Nitrate occurred at concentrations exceeding natural levels in many areas, and commonly exceeded 10 milligrams per liter (as nitrogen). In addition to land use in the aquifer recharge area, concentrations of nitrate in Groundwater are related to regional patterns in soil drainage that affect underlying aquifer redox conditions. Over the peninsula, nitrate concentrations are not related to recharge date of the water, but are positively correlated with depth in shallow wells screened beneath agricultural areas. Nitrate concentrations increased in oxic areas (dissolved oxygen greater than 1 milligram per liter) of the deeper part of the surficial aquifer used for domestic supply by an average of about 2 milligrams per liter between 1988 and 2001, although no changes were apparent in shallower parts of the aquifer over that same period. Water in the surficial aquifer generally flows from land-surface recharge to surface-water discharge areas in less than 30 years. As a result, the entire flow system in the surficial aquifer has likely been affected by human activities on and near the land surface over the past several decades.

Pesticide compounds occurred widely at low levels throughout the surficial aquifer. The most commonly used herbicides (metolachlor, alachlor, and atrazine) were the most commonly detected. These pesticides primarily occurred in Groundwater in the form of degradation products. The widespread occurrence of these and other pesticide compounds reflects their abundant use as well as chemical properties and aquifer characteristics that allow their movement into Groundwater. Mixtures of pesticides are common. Most samples contained at least 3 different compounds; several samples contained as many as 11. Pesticide concentrations in the surficial aquifer are relatively high beneath recharge areas with well-drained soils in the shallow part of the aquifer and in oxic environments throughout the surficial aquifer. Concentrations are generally below existing drinking-water standards, although standards are not available for all of the pesticide compounds detected. Temporal trends in pesticide concentrations are difficult to determine from available data. Although pesticides were more frequently detected in 2001 than in 1988, this increased frequency of detection is likely due to improved sampling and analytical methods that report detections at lower levels, and may not be indicative of actual changes in pesticide concentrations in the surficial aquifer since 1988.

Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo logo U.S. Department of the Interior | U.S. Geological Survey
Page Contact Information:
Page Last Modified: Thursday, September 14, 2017