USGS - science for a changing world

Water Science for Maryland, Delaware and the District of Columbia

Home >> Publications >> Online Publication - WRIR 01-4216

Occurrence and Distribution of Enteric Viruses in Shallow Groundwater and Factors Affecting Well Vulnerability to Microbiological Contamination in Worcester and Wicomico Counties, Maryland

By William S.L. Banks, Cheryl A. Klohe, and David A. Battigelli

>> Download WRIR 01-4216
     (1 Mb PDF Document)

Abstract

The U.S. Geological Survey, in cooperation with the Maryland Department of the Environment and the Wisconsin State Laboratory of Hygiene, conducted a study to characterize the occurrence and distribution of viral contamination in small (withdrawing less than 10,000 gallons per day) public water-supply wells screened in the shallow aquifer in the Piedmont Physiographic Province in Baltimore and Harford Counties, Maryland. Two hundred sixty-three small public water-supply wells were in operation in these counties during the spring of 2000. Ninety-one of these sites were selected for sampling using a methodology that distributed the samples evenly over the population and the spatial extent of the study area. Each site, and its potential susceptibility to microbiological contamination, was evaluated with regard to hole depth, casing interval, and open interval. Each site was evaluated using characteristics such as on-site geology and on-site land use.

Samples were collected by pumping between 200 and 400 gallons of untreated well water through an electropositive cartridge filter. Water concentrates were subjected to cell-culture assay for the detection of culturable viruses and reverse-transcription polymerase chain reaction/gene probe assays to detect viral ribonucleic acid; grab samples were analyzed for somatic and male-specific coliphages, Bacteroides fragilis, Clostridium perfringens, enterococci, Escherichia coli, total coliforms, total oxidized nitrogen, nitrite, organic nitrogen, total phosphate, ortho-phosphate, calcium, magnesium, sodium, potas-sium, chloride, sulfate, iron, acid-neutralizing capacity, pH, specific conductance, temperature, and dissolved oxygen.

One sample tested positive for the presence of the ribonucleic acid of rotavirus through poly-merase chain-reaction analysis. Twenty-nine per-cent of the samples (26 of 90) had bacterial con-tamination. About 7 percent of the samples (6 of 90) were contaminated with either male-specific coliphage, somatic coliphage, or bacteriophages of Bacteroides fragilis. About 3 percent of the sam-ples (3 of 87) had oxidized nitrogen concentra-tions that exceeded the U.S. Environmental Protection Agency’s Maximum Contaminant Level of 10.0 milligrams per liter. A statistical analysis showed that no significant relation exists between the presence of bacteria or coliphage and all variables, except the mean temperature of the water sample as measured in the field. Additionally, the concentration of total coliform bacteria had a statistically significant, moderately strong cor-relation with the concentration of sulfate and sample pH as measured at the U.S. Geological Survey National Water-Quality Laboratory in Denver, Colorado.


Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http://md.water.usgs.gov/publications/wrir-01-4216/index.html
Page Contact Information: webmaster@md.water.usgs.gov
Page Last Modified: Friday, January 25, 2013